National Energy Technology Laboratory

Overview

and

Office of Coal and Environmental Programs

Carl O. Bauer, Associate Director

National Energy Technology Laboratory

- DOE's Only Fossil Energy National Laboratories
- Extensive extramural R&D with strong industry ties
- Focused on-site science and technology R&D
- Technical support for energy and environmental policy development
- Only Government-owned and -operated National Laboratory

Our Mission

 Resolve the environmental, supply, and reliability constraints of producing and using fossil resources to provide Americans with a stronger economy, healthier environment, and more secure future

NETL

Fossil Energy RD&D Activities Managed as Four Program Areas by NETL

Electric Power
Using Coal
Mining to Light Switch

Energy
Policy Support
A Key Issue in Use
of Fossil Energy

Strategic Center for Natural Gas Borehole to Burner Tip

Clean Fuels

Oil Supply NPTO

Fuels from
Coal and Gas
Supply and Delivery of Clean
Fuels for Transportation/
Other End Use Sectors

An Extensive Portfolio of Projects with External Organizations

- Over 800 research activities in all 50 states and 16 countries
- Total award value of \$7.3 billion
- Research performers include:
 - Private industry
 - Universities/colleges
 - Not-for-profit labs
 - Other DOE national labs.
 - Others
- Private sector cost sharing of \$3.9 billion
 - Leverages DOE funding
 - Ensures relevance
 - Mission accomplishment only through commercialization
 - 55 active MOU's and MOA's

Projects by Partner Group

World Energy Use Is Growing Dramatically

Population Projections: United Nations "Long-Range World Population Projections: Based on the 1998 Revision" Energy Projections: "Global Energy Perspectives" ITASA / WEC

The World Needs Low-Cost Energy

Replacements for Fossil Energy?

- Wind/hydro/geothermal
 - Not enough
- Biomass
 - Transportation, land use, expense
- Solar
 - Land use, capital cost, storage
- Nuclear
 - Expense, politically difficult, proliferation issue

Hydrogen

Needed: An Affordable, Clean, and Abundant Energy Source
No Known Source Meets These Criteria

Electric Power Using Coal

Mining to Light Switch

Existing Fleet Technologies

- Emission control (NOx,SOx, PM2.5, mercury/air toxics)
- Efficiency improvements (Clean Coal Demonstrations)

- Improved environmental technology
- Efficiency improvements
- Repowering & retrofitting
- Power Plant Improvement Initiative

Vision 21-Future Energy Plants

- Near-zero emissions
- Technology innovation
- Market flexibility and competitive economics

Carbon Sequestration: An Important Option to Address Climate Change

- Low-cost capture
- Long-term storage

Mining/Water: Addressing Energy Supply Issues

- Mining "Industry of the Future"
- Watershed management

Coal and Environmental Systems Program "A Strategic Center for Coal"

Coal Meets Much of Our Stationary Energy Needs

Source: EIA, Annual Energy Outlook, 2001

Benefits Legacy from CCT Program and Associated RD&D

- Life-Cycle Cost Savings to Industry and the Public for Near-Term Deployment
 - Lower capital and operating costs for advanced power plants and NOx and SO2 pollution control systems equate to \$23 billion.
 - Lower compliance costs for air toxics and solid waste, through technology development, is estimated at \$70 billion.
 - Market value of SO2 and NOx reduction is estimated at \$10 billion.
 - Improved waste characterization and advances in waste recovery are estimated to result in a \$25 billion cost benefit.

Coal Technologies Are Cost Competitive

Coal Technologies Keep Getting Cleaner

Improved Environmental Performance

Comparison of Power Generation Technologies							
	Average (1999)	State-of-the-Art (2000)			Future (2010)		
	PC	PC	IGCC	NGCC	PC	IGCC	NGCC
Nominal Efficiency HHV % (LHV%)	33	40	43	52 (57)	44	52	58 (63)
SO ₂ Emissions lb/10 ⁶ Btu (lb/MWh)	1.3 (13.8)	0.05 (0.5)	0.02 (0.15)	~ 0	0.025 (0.2)	0.017 (0.13)	~ 0
NO _x Emissions lb/10 ⁶ Btu (lb/MWh)	0.5 (5.2)	0.15 (1.3)	0.04 (0.31)	0.028 (0.20)	0.03 (0.3)	0.024 (0.18)	0.028 (0.20)
Particulate Emissions lb/10 ⁶ Btu (lb/MWh)	0.05 (0.5)	0.01 (0.08)	0.007 (0.053)	~ 0	0.01 (0.08)	0.002 (0.015)	~ 0
Fuel Type Cost - \$/10 ⁶ Btu	Coal 1.2	Coal 1.2	Coal 1.2	Gas 3.5 - 7.5	Coal 1.1	Coal 1.1	Gas 4.0-7.0
Capital Cost 1999 \$/kW	N/A	1000	1200	550	950	1000	500
Cost of Electricity 1999 WkWh	4.0	3.5	3.7	4.0 - 6.8	3.4	3.1	3.5-6.0

Basis / Assumptions for Technology Comparisons

	Average (1999)		State-of-the-Ai (2000)	·t	Future (2010)			
	PC	PC	IGCC	NGCC	PC	IGCC	NGCC	
Technology	Sub Critical	Super Critical	Texaco O ₂ Blown	"H" Frame	Ultra Super Critical	Advances in Sub Components	Next Generation Turbine	
SO ₂ Control Technology	Low Sulfur Coal and/or FGD	Wet Limestone 96% - 98%	Amine & Claus or Hot Gas Clean-Up	Sulfur free natural gas	Wet Limestone > 99%	Hot Gas Clean-Up	Sulfur free natural gas	
NO _x Control Technology	Combustion Mods such as Low NO _x Burners	Low NO _x Burner, and SNCR or SCR	Quench & Staged Combustion	Combustion Mods such as zoning / staging	Low NO _x Burner, and SCR	Quench & Staged Combustion	Combustion Mods, such as zoning / staging	
Particulate Control Technology	Baghouse or ESP	Baghouse or ESP	Ceramic Candle Filter	Particulate free Natural gas	Baghouse or ESP	Ceramic Candle Filter	Particulate free Natural gas	
Size (MW)	350	400	350	400	400	500	400	

Notes: Assumes levelized costs

20 year book life

Nominal 70% plant capacity factor

Current maximum NSPS limits applicable to these plants

SO₂ – 1.2 lbs/10⁶ Btu and 90% reduction or 0.6 lbs/10⁶ Btu and 70% reduction

► NO_x – 1.6 lbs/10⁶ Btu for new construction

 $ightharpoonup PM - 0.03 lbs/10^6 Btu$

Nomenclature: PC = Pulverized Coal

IGCC = Integrated Gasification Combined Cycle

NGCC = Natural Gas Combined Cycle

References: DOE Report #DE-AC01-94FE62747

EIA Annual Energy Outlook 2001

DOE NETL Program Goals / Extrapolations

Discussions with equipment vendors and contractors

Electric Power from New Plants Using Coal

(~15 GW New Capacity Proposed at \$18 Billion Investment)

SPONSER	PROPOSED LOCATION	SIZE	TIMING	INVESTMENT	COAL TYPE
Tuscon Electric Power	Springerville Arizona	2 Units 380 MW each	Initiate - 2001 In Service - 2004, 2005	~ \$ 500 Million	Sub-Bituminous
Tri-State Generation and Transmission	Las Animas Colorado		Initiate - 2001 In Service - TBD	\$ 1.2 Billion	TBD
Corn Belt Energy (DOE)	Elkhart Illinois	91 MW	Initiate - 2001 In Service - 2004	\$ 137 Million	Waste Coal
Southern Illinois Power	Marion Illinois		Initiate - 2000 In Service - 2002	\$ 50 Million	Bituminuous Coal Fines
EnviroPower	Sullivan County Indiania	500 MW	Initiate - 2001 In Service - 2004	\$ 600 Million	Waste Coal
EnviroPower	Pike County Indiania		Initiate - 2001 In Service - 2004	\$ 600 Million	Waste Coal
EnviroPower	Knott County Kentucky	525 MW	Initiate - 2001 In Service - 2005	\$ 600 Million	Waste Coal
East Kentucky	Maysville Kentucky		Initiate - 2001 In Service - TBD	~ \$ 300 Million	TBD
Global Energy (DOE)	Clark County Kentucky	400 MW	Initiate - 1999 In Service - TBD	\$ 432 Million	High Sulfur KY Bituminous
Peabody Group	Central City Kentucky	1500 to 2000 MW	Initiate - TBD In Service - TBD	TBD ~ \$3 Billion	Western Kentucky high-sulfur coal
AES Corporation	Cumberland Maryland	180 MW	Initiate - 1996 In Service - 2001	~ \$ 200 Million	Maryland Coal
Tractebel Power	Choctaw County Mississippi		Initiate - 1997 In Service - 2001	~ \$ 400 Million	Lignite

Electric Power from New Plants Using Coal

(~15 GW New Capacity Proposed at \$18 Billion Investment)

SPONSER	PROPOSED LOCATION	SIZE	TIMING	INVESTMENT	COAL TYPE
LS Power Services	Osceola Mississippi	1200 to 1600 MW	Initiate - 2001 In Service - 2005	\$ 1 Billion	TBD
Composite Power	Bear Creek Montana		Initiate - 2001 In Service - 2006	\$ 1.5 Billion	Montana Coal Deposits
Great River Energy or Westmoreland Coal or Montana Dakota Utility	North Dakota		Initiate - 2001 In Service - 2008	\$ 800 Million	North Dakota Lignite
Reliant Energy	Indiana Pennsylvania		Initiate - 2001 In Service - 2004	\$ 800 Million	Waste Coal
U.S. Electric Power	Whatcom County Washington		Initiate - 2001 In Service - 2004	~ \$ 300 Million	Low Sulfur Coal Vancouver
Wisconsin Energy & Madison Gas	Oak Creek Wisconsin		Initiate - 2002 In Service - 2007, 2009, 2011	•	Powder River Basin Sub-Bituminous
Alliant Energy	Wisconsin		Initiate - 2001 In Service - 2006	~ \$ 600 Million	TBD
Black Hills Corp.	Gillette Wyoming		Initiate - 1998 In Service - 2003	\$ 100 Million	Powder River Basin Sub-Bituminous
Black Hills Corp.	Gillette Wyoming		Initiate - 2001 In Service - 2005	~ \$ 600 Million	Powder River Basin Sub-Bituminous
Intermountain Power	Southwest Utah		Initiate - TBD In Service - 2006	\$ 800 Million	West Ridge Mine
Utah Governor Mike Leavitt (R)	Delta Utah		Initiate - TBD In Service - TBD	TBD ~ 2.5 Billion	TBD

Coal-Based Power Production Issues and Opportunities

Electric power reliability

- Multi-pollutant control
- Fine particulates(PM_{2.5}) and Hg
- Improved efficiency
- Global climate change

Coal-Based Power Technologies

A Strategic Time-Phased MARKET DRIVEN RD&D Program

Fossil Energy COAL Technology RD&D Program

Coal and Environmental Systems* FY 2001/FY 2002 Budget Comparisons

Traditional Pollutants

Vision 21

Ultra-Clean Energy Plant of the Future

Energy Plants for Post-2015

- Use available feeds:
 - Coal, gas, biomass, waste
- Electricity is a primary product
 - Can co-produce fuels, chemicals, steam, heat

Goal:

Absolutely Minimize
Environmental
Implications of
Fossil Energy Use!

- Maximize efficiency
 - 60% coal-to-electric
- Near-zero emissions
 - Option for carbon sequestration

Vision 21 Program Objectives

Capital & Operating Costs/RAM

 Vision 21 must be competitive with other energy systems with comparable environmental performance

Emissions

- < 0.01 lb/10⁶ Btu SO₂ and NO_x
- < 0.005 lb/10⁶ Btu PM
- <1/2 organic compounds in Utility HAPS Report
- <1 lb/109 Btu Hg

Schedule of Benefits

- Technology spinoffs by 2005
- Designs for modules by 2012
- Commercial plant designs by 2015

Efficiency

- Electricity generation coal based 60% (ннv) gas based 75% (Lнv)
- Fuels only plants 75% (LHV)

Advanced Technologies Will Play a Crucial Role in Addressing Climate Change

